Recent Developments in the UltraForm Finishing and UltraSurf Measuring of Axisymmetric IR Domes

Mirror Technology SBIR/STTR Workshop
June 8, 2010
David Mohring, Mike Bechtold, Scott Bambrick
Scott DeFisher, Shai Shafrir, Jayson Tierson

OptiPro Systems, LLC
Ontario, NY 14519
(585) 265-0160

Distribution Statement : Approved for General Public Release
UltraForm Finishing and UltraSurf Measuring of Axisymmetric Domes

OptiPro Systems, LLC
Ontario, NY

INNOVATION
The UltraForm Finishing (UFF) and the UltraSurf platforms developed by OptiPro Systems deterministically polish and measure complex aerodynamic and conformal shapes made of difficult to manufacture glass, crystal and ceramic materials.

ACCOMPLISHMENTS
- 2008 OSA – Paul Forman “Excellence in Engineering Award” for first affordable Computer Controlled Optical Machining Center.
- Optical fabrication companies and prime contractor suppliers are embracing the new technology to cost effectively manufacture axisymmetric domes and optics for newly designed defense systems.
- The integration of the UFF (CNC controlled finishing platform) and the UltraSurf (Automated non-contact measurement device) provides a deterministic fabrication solution for a wide range of newly developed windows, domes and mirrors.

COMMERCIALIZATION
- UltraForm Finishing (UFF) : Asphere, Axisymmetric Dome, Freeform Polisher
 - Private Sector installations at Universities, Material manufacturers and Precision optical component manufacturers
- UltraSurf : Non-Contact Asphere, Axisymmetric Dome measurement platform
 - Private Sector Asphere and Dome Measurement System will be available by July 2010
- Primary market focus is on companies engaging in the optical fabrication and measurement of spherical domes, aspheres, parabolic mirrors, torics and conformal/freeform shapes.
- Private sector investment into the UFF and UltraSurf platforms has been through Beta site partners and production level machine purchases.
- OptiPro Systems, LLC has alliances with material manufacturing firms who require new manufacturing techniques to test and enhance their prototype components and determine the pathway to production level quantities.

Date : June 8, 2010
Optical Fabrication History

- **SX Optical CNC Machining Centers**
 - Defense Advanced Research Projects Agency, DARPA
 - Developed with the Center for Optics Manufacturing, Kodak and DARPA
 - Machines sold to fabrication companies and DOD Prime Contractors

- **ePX Spherical High Speed Optical Dome Polisher**
 - High Speed Polishing of JAGM Spinel and AlON Domes
 - Machines sold to fabrication companies and DOD Prime Contractor vendors

- **UFF UltraForm Finishing 5-Axis Polisher**
 - Initial prototype developed with Army Contract DAAE30-95-C-0091 SBIR
 - CeraLumina (PCA) Ogive production with Navy Contract N68936-08-C-0050 SBIR
 - Machines sold to fabrication companies and DOD Prime Contractor vendors
 - Materials include: Optical Glass, PCA, ALON, Spinel, Si, SiC, IR Material
 - Shapes include: Domes, Aspheres, Ogive, Non-Axisymmetric freeform

- **UltraSurf 5-Axis Non Contact Metrology System**
 - Development with Naval Air Systems Command Contract N68936-07-C-0046 SBIR
 - Prototype platform for Dome, Ogive, Asphere and Freeform/Conformal surfaces
CNC Fabrication Equipment

- eSX
- ePX
- UFF
- SXL

Dome
Ogive
Conformal
Materials

<table>
<thead>
<tr>
<th></th>
<th>CeraLumina™</th>
<th>Spinel</th>
<th>Sapphire</th>
<th>ALON™</th>
<th>SiC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain Size (microns)</td>
<td>0.4</td>
<td>100-200</td>
<td>2-5, 40-100</td>
<td>150-250</td>
<td>0.2 – 4.5</td>
</tr>
<tr>
<td>Hardness (Hv) Kgf/mm²</td>
<td>2284</td>
<td>1350</td>
<td>1700</td>
<td>1560</td>
<td>2800</td>
</tr>
<tr>
<td>Fracture Toughness (K) MPa•m¹/²</td>
<td>3.3</td>
<td>2.2</td>
<td>3.6</td>
<td>2.8</td>
<td>4.7</td>
</tr>
</tbody>
</table>

Standard Optical Material
- ULE & Zerodur
- Fused Quartz
- BK7 & Pyrex

Finishing Importance
- Transmissive and reflective surface wavefront
- Strength enhancement in brittle materials
- Contamination issues during coating
Dome High Speed Polishing Challenges

- Material removal & cycle time
- Grain highlighting
- Wavefront distortion
- Determinism
- Fixtures
- Spindle loads
- Tool Clearances
- 1:1 tool to part size
High speed polishing platform

Machine Features
- High Torque Spindles
 - 1.3 Kw to 5.0 Kw
- High Pressure thru the tool slurry
- Tool Truing Process with variable toolpath & infeed
- Work envelope optimized for dome process fixtures
- Dome polish software customization
 - Easy Setup
 - User interface design with motion feedback & control
 - Work piece/Tool collision detection
Polish grinding damage out of a 7” diameter dome
90-120min
Wavefront over 70mm aperture

2 mm thick Dome

½ wave PV
.06 wave rms
UltraForm Finishing

- 5 axis CNC Platform: 3 Linear X,Y,Z and 2 Rotary B and C
- Industrial Fagor 8070 CNC Control with User Friendly GUI
- On-Board metrology for removal function and preliminary part measurement
- Bound/Fixed abrasive with Coolant & Slurry containment - feed systems
UFF Solution

- Polish, fine ground spherical, aspheric, freeform and plano surfaces (No pre-polishing requirements)
- 2 different length arms, the long extension arm of the wheel allows finishing inside deep concave ogive missile domes
- Wide variety of Ultrawheel durometers and diameters and abrasive belts
- Long belt lengths with a variety of finishing materials and slurries allows for a more deterministic polishing process
- On-board metrology for work piece and removal function analysis
- Intuitive Graphical User Interface with surface correction algorithms
UltraForm Finishing polishes using a precision controlled belt
- Fixed abrasive cerium oxide, alumina and diamond belts
- Conventional polyurethane pad belts with abrasive slurries
In-Situ UltraWheel geometric measurement

- Laser Probing the tool insures process repeatability
 - The exact location of the tool in the X and Y axis
 - This allows for the best possible centering
 - The exact size and shape of the tool
 - This allows for the tool to be modeled as accurately as possible
UFF removal function is measured in situ w/noncontact optical sensor

- Non-contact chromatic confocal imaging optical sensor (collimated white light) for 3D surface metrology
- Innovative non-contact technique for 3D metrology recommended by the ISO 25178 international standard.
Glass Tangent Ogive 2009

1. Block on ID Fixture
2. Rough and Fine Grind OD
3. Move Fixture with Ogive to UltraForm Polishing Machine
4. Polish OD
5. De-block
Glass Tangent Ogive 2010

Rough and Fine Grind OD

Move Fixture with Ogive to UltraForm Polishing Machine
Glass Tangent Ogive

Fused Quartz Glass Ogive processed from solid block to expedite the work piece requirements for metrology tests
Recent Developments in UFF

- New Splice-less belt designs
- R-Theta error correction algorithm solution
- Conformal optics Ellipsoids, Toroids and Aspheric Cylinders using raster algorithm solution
- Cost reduction in production aspheres
Splice-less Belts

- BK7
- Spray on slurry
- 8-9 Å RMS surface roughness
Tool Path Options includes “R” & “Theta” error corrections

R-Theta

- Tool traverses left to right
- Best for rotationally symmetric shapes

Theta Errors

“R” Errors

“Theta” Errors
R-Theta results example for BK7

• Initial Surface
 • PV: 0.793 λ
 • RMS: 0.208 λ

• Final Surface
 • PV: 0.119 λ
 • RMS: 0.018 λ
Results – Ellipse Raster 2009

Simulation: 5.1μm

GPI PV: 5.23μm
Results – Ellipsoid Raster 2010

Ellipsoid From 2 Years Ago
Cost Reduction in Production Aspheres

Define - AspherePro

Grind - eSX or SXL 5 axes grinder

Measure - OptiTrace 5000

Transfer measured data to UFF

Polish - UltraForm Finishing (UFF)

1-2 polishing iterations and ship!

June 8, 2010

OptiPro Systems
UltraSurf Metrology

- 5-Axis Non-Contact Measuring System
- Utilizes Various Non-Contact Probes
- All Air Bearing Axes
- Linear Motors
- Brushless DC Rotary Motors

![Image of UltraSurf Metrology device]

<table>
<thead>
<tr>
<th>Axis:</th>
<th>X, Y, Z</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel:</td>
<td>200 mm</td>
<td>360°</td>
<td>360°</td>
</tr>
<tr>
<td>Resolution:</td>
<td>5 nm</td>
<td>0.018 second</td>
<td>0.009 second</td>
</tr>
<tr>
<td>Accuracy:</td>
<td>25 nm</td>
<td>0.09 second</td>
<td>0.045 second</td>
</tr>
<tr>
<td>Max. Velocity:</td>
<td>30 mm/s</td>
<td>6 RPM</td>
<td>6 RPM</td>
</tr>
</tbody>
</table>
UltraSurf Dome, Ogive and Freeform

June 8, 2010
OptiPro Systems
Typical UltraSurf Measurement

Concentric rings on a rotationally symmetric part

Spacing Can Be Dynamically Controlled
Optical Probes

<table>
<thead>
<tr>
<th>Probe:</th>
<th>Lumetrics OptiGauge</th>
<th>STIL OP300VM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement Range:</td>
<td>12 µm – 15 mm</td>
<td>300 µm</td>
</tr>
<tr>
<td>Focal Distance:</td>
<td>25 mm or 50 mm</td>
<td>5 mm</td>
</tr>
<tr>
<td>Focal Point Diameter:</td>
<td>100 µm</td>
<td>10 µm</td>
</tr>
<tr>
<td>Angular Tolerance:</td>
<td>2 °</td>
<td>25 °</td>
</tr>
<tr>
<td>Accuracy:</td>
<td>200 nm</td>
<td>90 nm</td>
</tr>
<tr>
<td>Resolution:</td>
<td>30 nm</td>
<td>10 nm</td>
</tr>
<tr>
<td>Scan Rate:</td>
<td>1 - 50 Hz</td>
<td>50 - 2000 Hz</td>
</tr>
</tbody>
</table>

Currently testing and implementing these 2 non-contact probe styles. Other probes may be utilized on the UltraSurf.
Process Flow For Measurement

Mount Part
- Use any desired method

Enter Shape Parameters
- Radius
- Coefficients
- Point Spacing

Center/De-Tilt
- Easy to use manual alignment table

Sensor Alignment
- Using the non-contact probe

Run the Scan
- UltraSurf automatically performs measurement

View the Data
- UltraSurf software reconstructs the data using triangle-based interpolation
Small Dome Setup
Small Dome, Convex Surface Error

UltraSurf

Stitching Interferometer

UltraSurf CX Dome Surface Error

Stitching Interferometer CX Dome Surface Error
Large Dome, Surface Error

Convex

Concave

Surface Error Projected over Dome
Large Dome, Thickness

Overall Dome Thickness

Curve Mismatch, 97 μm
Wedge or Piston

Thin Center, Thick Edge
Ogive Results

Large, Fine Ground Ogive
Ogive Surface Results

Note Grinding Fixture Features
Ogive Thickness Result

Isometric view of thickness map

Top Down View
Collaborative Cost Optimization

Optical Designers → Material Manufacturers

Optical Fabrication & Metrology Equipment

Optical Manufacturing Vendors → Prime Contractors
- Workpiece Diameter Range of 10-500mm, max weight of 170 kg
- Work Spindle 1-250 rpm
- Tool Spindle 100-12,000 rpm
- Quickchange Tooling
- Vacuum Workholding
- 48” x 28” x 20” XYZ Axes travels
- B-Axis ±90°, C-Axis 0° to 360°
- Automatic Tool Changer
- Tool/Workpiece Probe
- User Friendly Operator Screens
- Built in Electronic Spherometer
- Ethernet communications
- Fagor 8070 5-axis CNC Control

Online in July 2010
Acknowledgements

- SBIR Program Managers
 - Navy NAVAIR
 - Army RDECOM

- Universities
 - University of Rochester / LLE
 - Penn State / EOC