Affordable Pre-Finishing of SiC for Optical Applications

Mirror Technology Days 2008
Albuquerque, NM

Presented by:
Jay C. Rozzi, Ph.D., Creare Inc.
Presentation Outline

• Background
• Innovation
• Phase I Results
• Program Overview
• Summary
• Introduction to Creare
Silicon Carbide Optics

- Silicon carbide is an excellent candidate to replace beryllium in lightweight optics
- Eliminates toxicity concerns
- Lightweight, thermally stable
- Cost-effective manufacturing remains a challenge
Overall Manufacturing Process

<table>
<thead>
<tr>
<th>R_a</th>
<th>Moderate (~2 μm)</th>
<th>Low (~25 nm)</th>
<th>Very Low (~5 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>25 μm</td>
<td>100 nm</td>
<td>10 nm</td>
</tr>
<tr>
<td>MRR</td>
<td>N/A</td>
<td>High/Low</td>
<td>Low</td>
</tr>
<tr>
<td>Process</td>
<td>Single Step</td>
<td>Multiple Steps</td>
<td>Single Step</td>
</tr>
<tr>
<td>Cost</td>
<td>$$</td>
<td>$$$$$</td>
<td>$$</td>
</tr>
</tbody>
</table>
Pre-Finishing Process

High MRR Step
- Rapid removal
- Minimize SSD
- Accuracy 1 μm
- $R_a \sim 200$ nm

Low MRR Step
- Minimal to no SSD
- Accuracy 100 nm
- $R_a \sim 25$ nm

Transition
Our Hybrid Machining Approach

- Use single-point diamond turning (SPDT)
- High MRR Process: Spin-turning
- Low MRR Process: Ductile-regime machining (DRM)
Phase I Objectives Achieved

• Demonstrated Feasibility of Machining CVD SiC
 – Successfully machined material to near-optical quality
 – Demonstrated use of DRM for low MRR step

• Demonstrated Cost Savings
 – Completed detailed cost analysis
 – Showed that other options are as much 85% higher cost

• Developed a Plan to Scale-Up
 – Developed the hybrid approach
 – Both based on SPDT
 – Sufficient to machine optics for NASA
Phase I Technical Achievements

Setup for Low MRR Tests

Measured Cutting Forces
Phase I Technical Achievements

Mirror-Like Surface Produced in CVD SiC

Wavefront Profile (~40 nm variation)

Tool Wear After ~100 Cuts

Roughness (~45 nm R_a)
Program Overview

Phase I SBIR
- Basic Feasibility Testing
 - Functionality
 - Cost-reduction
 - Operational constraints

Phase II SBIR
- Prototype Development
 - Retro-fit system
 - Control system development
 - Evaluate and optimize
 - Testing and scale-up
 - Demonstration

Phase II&III
- Commercialization and Transition

- Prototype
- Commercial Partner
- Related Manufacturing Innovations
- A Suite of Commercial Products

SBIR Data Rights
Distribution A: Approved for Public Release
Distribution is Unlimited

Copyright © 2008 Creare Incorporated
An unpublished work. All rights reserved.
Summary

• Demonstrated feasibility and cost-effectiveness of our Hybrid Machining Approach
• Showed that DRM is viable process for the low-MRR phase
• Identified an available approach for the high-MRR process for Phase II
• Developed an overall program approach that focuses on commercialization and transition
Creare Incorporated

- “Problem Solvers”
- Contract Engineering R&D
 - Diverse Technical Expertise
 - Extensive Facilities
- Industrial & Federal Client Base
- Founded 1961
- Partnership of Engineers
- Technology Commercialization
 - Licensing
 - Spin-off Companies
 - Custom Products
 - Phase III
- Spinoffs
 - 9 companies/1900 employees
 - Revenues $400 M/year

- Crycooler for HST
- Catapult Gap-Width Measurement Device
- Anti-Corrosion Coverings
Technology Areas

- Fluid Dyn. & Heat Trans.
- Biomedical
- Cryogenics
- Software & Data Systems
- Sensors & Controls
- Manuf. Technology

Image Reconstruction
For
Virtual Colonoscopy

Automated Assembly
for Thermal Batteries

Advanced Head/Hearing Protection for Carrier Deck Crews

Turnkey High-Performance Data Acquisition and Processing System

Miniature High-Speed Turbine

Microchannel Evaporator for Microprocessor Cooling
Manufacturing Technology

- Process Development/Enhancement
- Manufacturing Support
- Coating, Joining, and Machining
- Innovative Materials

Thermal Spray of Selective Emissivity Coatings

Laser-Assisted and Ultra-Precision Machining

Indirect Cooling for High-Performance Machining

Titanium Welding Research
SBIR DATA RIGHTS

These SBIR data are furnished with SBIR rights under Contract No. NNX08CB94P. For a period of 4 years after acceptance of all items to be delivered under this contract, the Government agrees to use these data for Government purposes only, and they shall not be disclosed outside the Government (including disclosure for procurement purposes) during such period without permission of the Contractor, except that, subject to the foregoing use and disclosure prohibitions, such data may be disclosed for use by support Contractors. After the aforesaid 4-year period the Government has a royalty-free license to use, and to authorize others to use on its behalf, these data for Government purposes, but is relieved of all disclosure prohibitions and assumes no liability for unauthorized use of these data by third parties. This Notice shall be affixed to any reproductions of these data, in whole or in part.