8-meter UV/Optical Space Telescope at L2

H. Philip Stahl, Ph.D.
NASA MSFC
Executive Summary

The unprecedented volume capability of an Ares V enables the launch of 8 meter class monolithic space telescopes to the Earth-Sun L2 point.

The unprecedented mass capability of an Ares V enables an entirely new design paradigm – Simplicity.

Simple high TRL technology offers lower cost and risk.

NASA MSFC has determined that a 6 to 8 meter class telescope using a massive high-TRL ground observatory class monolithic primary mirror is feasible.
Design Concept

8 meter Monolithic Telescope & tube can fit inside Ares V 10 m envelop.

Minimize Cost (& Risk) by using existing ground telescope mirror technology – optics & structure.

8-meter diameter is State of Art

9 existing: VLT, Gemini, Subaru, LBT
23,000 kg (6 m would be ~13,000 kg)
~$30M (JWST PM cost ~$120M)
7.8 nm rms surface figure (~TPF spec)

Expect similar savings for structure
6 meter Optical Design

Ritchey-Chretién optical configuration
F/15
Diffraction Limited Performance at <500 nm
Diffraction Limited FOV of 1.22 arc minute
(10 arc minute FOV with Corrector Group)
Coating: Aluminum with Mg F2 overcoat
Average transmission > 63% for wave lengths of 200 to 1,000 nm
Primary to secondary mirror vertex: 9089.5 mm
Primary mirror vertex to focal plane: 3,000 mm

All Reflective Design
Three Mirror Anastigmatic
With Fine Steering Mirror
Multi-Spectral 10 arc min FOV
Reduced Throughput
Structural Design

Launch Configuration

Tube is split and slides forward on-orbit. Faster PM or taller shroud may allow for one piece tube.

Doors can open/close

Forward Structure is hybrid of Hubble style and four-legged spider

Truss Structure interfaces with 66 mirror support attachment locations

Launch Structure attaches Truss to Ares V
Structural Analysis

Launch loads: *maximum* values from POST3D (not concurrent)

Axial: 4 g’s
Lateral-y: 7×10^{-6} g’s
Lateral-z: 6×10^{-4} g’s

8.2 meter 175 mm thick meniscus primary mirror *can survive launch*. 66 axial supports keep stress levels below 1000 psi
Spacecraft Structural Modeling

- 3X Docking Latches
- 2X GHe Tank Skirt
- 4X MMH Tank Skirt
- NTO Tank Skirt
- Instrument Interface
- Upper Shelf
- Middle Shelf
- Lower Shelf
- MPS Nozzle Openings
- Instrument Frame & Outer Skin Not Shown
- Avionics & Power System Attachments
Spacecraft Structural Analysis Assumptions

Launch Load Case: 4.0g Axial + 2.0g Lateral

Materials: Metallic Structure Only
- AA 2219 for plate elements
- AL 7075 for Beam Elements

Factors of Safety: (per NASA-STD-5001)
- Yield Factor of Safety: 1.1
- Ultimate Factor of Safety: 1.4

Cross-Sectional View of Spacecraft
Structural Model Results

Upper Shelf:
 Shelf: Isogrid Panel 0.090”
 (minimum pocket thickness)

Middle Shelf:
 Shelf: Isogrid Panel 0.060”
 (minimum pocket thickness)
 MMH Skirts: 0.064” thk
 NTO Skirt: 0.088” thk
 GHe Skirt: 0.040” thk

Lower Shelf:
 Shelf: Isogrid Panel 0.060”
 (minimum (pocket thickness)

Instrument Support Frame:
 Upper Support: “T” Beam, 0.095” thk
 Uprights: 2” diameter, 0.030” thk
 Angled Supports: 1.75” diameter, 0.030” thk

Outer Skin:
 Upper Outer Skin: 0.26” thk
 Lower Outer Skin: 0.21” thk
Spacecraft Design Detail & Shroud Integration

Science Envelope = 2.5 m x 2.5 m x 2.0 m

NOTE: All dimensions are in meters.
6 meter Preliminary Mass Budget

<table>
<thead>
<tr>
<th>Mass (Kg)</th>
<th>Heritage</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary mirror assembly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary mirror assembly</td>
<td>20000</td>
<td></td>
</tr>
<tr>
<td>Primary mirror</td>
<td>13,000</td>
<td>calculated</td>
</tr>
<tr>
<td>Primary mirror support structure</td>
<td>6,750</td>
<td>estimate</td>
</tr>
<tr>
<td>Primary mirror center baffel</td>
<td>250</td>
<td>estimate</td>
</tr>
<tr>
<td>Secondary mirror assembly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary mirror</td>
<td>1000</td>
<td>calculated</td>
</tr>
<tr>
<td>Secondary mirror support & drive</td>
<td>150</td>
<td>estimate</td>
</tr>
<tr>
<td>Secondary mirror baffle</td>
<td>30</td>
<td>estimate</td>
</tr>
<tr>
<td>Secondary mirror spider</td>
<td>400</td>
<td>estimate</td>
</tr>
<tr>
<td>Telescope enclosure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metering structure with internal baffles</td>
<td>2800</td>
<td>estimate</td>
</tr>
<tr>
<td>Rear cover</td>
<td>300</td>
<td>estimate</td>
</tr>
<tr>
<td>Head ring</td>
<td>200</td>
<td>estimate</td>
</tr>
<tr>
<td>Front cover & actuator</td>
<td>300</td>
<td>estimate</td>
</tr>
<tr>
<td>Attitude Determination and Control System</td>
<td>150</td>
<td>JWST</td>
</tr>
<tr>
<td>Communications</td>
<td>76</td>
<td>Ei63</td>
</tr>
<tr>
<td>Command And Data Handling System</td>
<td>54</td>
<td>JWST</td>
</tr>
<tr>
<td>Power</td>
<td>380</td>
<td>Ei63</td>
</tr>
<tr>
<td>Thermal Management System</td>
<td>1090</td>
<td>JWST</td>
</tr>
<tr>
<td>Structures</td>
<td>920</td>
<td>estimate</td>
</tr>
<tr>
<td>Guidance and Navigation</td>
<td>50</td>
<td>estimate</td>
</tr>
<tr>
<td>Propulsion</td>
<td>20</td>
<td>JWST</td>
</tr>
<tr>
<td>Computer Systems</td>
<td>50</td>
<td>estimate</td>
</tr>
<tr>
<td>Propellant</td>
<td>50</td>
<td>Ei63</td>
</tr>
<tr>
<td>Docking station</td>
<td>1000</td>
<td>estimate</td>
</tr>
<tr>
<td>OTE W / Bus mass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science Instrument</td>
<td>1500</td>
<td>JWST</td>
</tr>
<tr>
<td>Attitude Determination and Control System</td>
<td>150</td>
<td>JWST</td>
</tr>
<tr>
<td>Communications</td>
<td>76</td>
<td>Ei63</td>
</tr>
<tr>
<td>Command And Data Handling System</td>
<td>54</td>
<td>JWST</td>
</tr>
<tr>
<td>Power</td>
<td>380</td>
<td>Ei63</td>
</tr>
<tr>
<td>Thermal Management System</td>
<td>480</td>
<td>Ei63</td>
</tr>
<tr>
<td>Structures</td>
<td>755</td>
<td>estimate</td>
</tr>
<tr>
<td>Guidance and Navigation</td>
<td>50</td>
<td>estimate</td>
</tr>
<tr>
<td>Propulsion</td>
<td>250</td>
<td>Ei63</td>
</tr>
<tr>
<td>Computer Systems</td>
<td>50</td>
<td>estimate</td>
</tr>
<tr>
<td>Propellant</td>
<td>6130</td>
<td>Ei63</td>
</tr>
<tr>
<td>Docking station</td>
<td>1000</td>
<td>estimate</td>
</tr>
<tr>
<td>Science Instrument W / Bus mass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science Instrument W / Bus mass</td>
<td>6275</td>
<td></td>
</tr>
</tbody>
</table>

Total mass = OTE W / Bus + Science Instrument W / Bus = 34,395

8 meter Preliminary Budget is 45,000 kg (~20% Reserve)
Thermal Analysis

Spacecraft wrapped with 10 layer MLI blankets

16.0 m² thermal radiators

Load Cases

0 (base)
45
90 (broadside)
120
Spacecraft Thermal Analysis

Solar Flux at L2 = 1296 W/m² applied to base
Instrument Heat Output = 750 W
Avionics Heat Output = 850 W
Propellant tanks modeled as single nodes with heat leaks from the spacecraft walls
Steady-state operational temperatures determined
Spacecraft wrapped with 50 layer MLI blankets
16.0 m² thermal radiators
Propellant tanks maintained with MLI and heaters
Heaters required to keep propellant from freezing
Primary Mirror Thermal Analysis Results

Sun = 0

Temperatures are in °C. Note varied temperature scale for each load case.

* Temperatures are in °C. Note varied temperature scale for each load case.
Primary Mirror Thermal Analysis

Active Thermal Management via 14 Heat Pipes yields a Primary Mirror with less than 1K Thermal Variation.

No Thermal Management yields a Cold PM

<table>
<thead>
<tr>
<th>Sun Angle</th>
<th>Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 deg</td>
<td>200K</td>
</tr>
<tr>
<td>90 deg</td>
<td>160K</td>
</tr>
<tr>
<td>120 deg</td>
<td>300K</td>
</tr>
</tbody>
</table>

with 1K Thermal Variation

Thus, possible End of Life use as a NIR/Mid-IR Observatory.

Figure Change will be driven by CTE Change from 300K to 150K

Zerodur CTE is approximately 0.2 ppm.
SiO2 CTE is approx 0.6 ppm.
Notional Spacecraft Propulsion System

Dual Mode: Hydrazine-NTP Bi-Prop / Hydrazine Mono-Prop
Propellant for 5 yr mission with redundant Thrusters

Hydrazine Mono-Prop with RCS 20/5 lbf Thrusters (Aerojet) for Station Keeping
Hydrazine-NTP Bi-Prop with four 125 lbf Thrusters (Northrop) for trip to L2
Trade Analysis:
Refueling (Orbital Express) = 40 kg
30 Year Propellant Supply = 30 kg

350 – 100 psi blowdown
Aerojet Thrusters
Spacecraft Reaction Wheels provide all GNC

Worst condition for solar radiation pressure torque is at sun angle = 90.

Momentum buildup occurs in one axis (y-axis)
Two performance Parameters were analyzed and plotted against each other:

- Hours that Telescope can stare at a fixed point (remain at an inertial hold) before needing to perform a momentum dump due to solar radiation pressure torque
- How fast in minutes the Telescope can perform a 60 degree slew

6 wheel and 4 wheel configurations were analyzed along with the worst case single wheel failure for each configuration.

Each configuration was analysis for three different TELDIX reaction wheel versions with different (Torque : Momentum Storage)

Analysis

is only for the worst case sun angle = 0

As the sun angle increases so does the available science time.

did not account for any solar panel contribution to solar pressure cp location.

This is worst case since accounting for the solar panels would move the cp location closer to the cg. Also, Telescope geometry is preliminary and may change due refinement in design
GNC: Reaction Wheels

Science Time vs Slew Time
6 and 4 Reaction Wheel Configurations
(Single Axis Solar Pressure Disturbance Torque and Single Axis Slew)

- TELDIX MWI 30-400
- TELDIX RSI 50-220
- TELDIX MWI 100-100

6 Nominal (0 deg sun angle)
5 Nominal, 1 Failure (0 deg sun angle)
4 Nominal (0 deg sun angle)
3 Nominal, 1 Failure (0 deg sun angle)

Torque
Momentum Storage

Best
Avionics and Power Systems Assumptions

Spacecraft

Avionics
- Spacecraft avionics systems are 1-fault tolerant for 5 year life
- Guidance and navigation system includes star trackers, sun sensors, and IMUs
- AR&D consists of a LIDAR long range system, and an optical short range system
- Computers handle all normal station keeping, maneuvers, data management, and ground communications
- Communication systems consist of Ka-band HGA for ground, and s-band for local comm and backup capability

Power
- Spacecraft power systems are 1-fault tolerant for 5 year life
- Power generation from two 9 m^2 deployable solar array wings with pointing ability
- Batteries are sized for 2 hours of power for midcourse and rendezvous operations (with arrays retracted)
- Spacecraft power system includes 800 w for mirror thermal control, and 750 w for telescope instrument package
Avionics and Power Systems Assumptions

Telescope

Avionics
• Telescope avionics systems are 3-fault tolerant for 30 year life
• Minimal guidance and navigation system, used only for station keeping during spacecraft exchange
• Minimal computer capability, used mainly for station keeping during spacecraft exchange
• All health and status data sent directly to spacecraft avionics system
• Low gain communications capability with the servicing spacecraft only

Power
• Telescope power systems are 3-fault tolerant for 30 year life
• 18 m^2 body mounted solar array around light tube, used for station keeping during spacecraft exchange
• Batteries sized for 0.5 hour attitude control contingency
• No active mirror thermal control during spacecraft exchange
Telescope Astrionics & Power Systems

Communications System
- LGA UHF Antenna
- Low Gain Receiver Transmitter

GNC/Vetronics/Comm Computer System

Command and Data System (CDS)

Spacecraft
- Spacecraft Computer
- PDU
- Front Data Acquisition Unit

H&M Instrumentation
- Pressure
- Temperature
- Radiation

Attitude Control System (ACS)
- Star Tracker
- IMU Gyros
- Sun Sensors

Power System
- RCS Acutators
- Sec Mirror Drivers and Dampers
- Telescope Door Actuator
- 28 VDC Power Distribution Unit
- Charger
- Power Generation Controller & PPT
- Secondary Battery

Solar Array
- Body mounted
Initial Mission designed for a 5 yr mission life (10 yr goal) should produce compelling science results well worth the modest mission cost.

But, there is no reason why the mission should end after 5 or even 10 years.

Hubble has demonstrated the value of on-orbit servicing

The telescope itself could last 30 or even 50 years.
30 to 50 year Mission Life

Copy Ground Observatory Model – L2 Virtual Mountain

Design the observatory to be serviceable
Telescope has no inherent life limits
Replace Science Instruments every 3-5 yrs (or even 10 yrs)

Replacement Spacecraft in ELV

Observatory has split bus with on-board attitude control and propulsion during servicing. (already in mass budget)

Autonomously docks to observatory; replaces all science instruments and ALL expendable components.

Spacecraft in 4.5 meter Payload Fairing
AR&D System Elements

- Telemetry Uplink to spacecraft provides target (Telescope) vehicle state vector to allow Long Range Relative Navigation sensor acquisition of target to begin rendezvous guidance.
- Spacecraft Rendezvous guidance commands generated by using Relative Navigation sensor measurements.
- Short range Relative Navigation sensor provides measurements to guidance for docking.
Conclusions

The unprecedented mass/volume capability of an Ares V enables the launch of 8 meter class monolithic space telescopes to the Earth-Sun L2 point.

NASA MSFC has determined that a 6 to 8 meter class telescope using a massive high-TRL ground observatory class monolithic primary mirror is feasible.

Mature, High-TRL design enables early deployment.

Science Instruments, Expendables and Limited Life Components can be replace periodically via Spacecraft Autonomous Rendezvous and Docking.
Any Question?