Infrastructure for a Permanent LUVOIR Observatory in Space

FOUNDATION FOR CONTINUING ASTRONOMY IN SPACE

NASA MIRROR TECHNOLOGY DAYS
Annapolis, Maryland
10 November 2015
Acknowledgements

- Accomplished With Assistance of Northrop Grumman Corporation
- Special Thanks To:
 - Ronald S. Polidan
 - James B. Breckinridge
 - Charles F. Lillie
- Images by NASA
 - Unless Specifically Noted Otherwise
A COMPLETE OBSERVATORY……

ON THE MOUNTAINTOP

REQUIRES………

A COMPLETE INFRASTRUCTURE……

ON THE MOUNTAIN

LARGE……

W. M. Keck Observatory

SMALL……
In-Space Astrophysics
Requires an Evolving Science Fleet

• Determine What Ground Observations Do Not Do Well (Or At All)

• New Flagship Class Capabilities Every Decade or So
 – Vital for critical high resolution observations
 – And for general astronomy / astrophysics observations

• Supplement With Smaller Systems: Probes and Explorers
 – More rapid programmatic response to newly identified questions
 – And less expensive
 – May want to service, replenish, and switch instruments on all space platforms

• Indicates need for an In-space Astrophysics Infrastructure
 – To support all sizes of Space Telescopes and Instruments
 – And science spacecraft designed and built for upgrades, major and minor
Embryonic Space Observatory

• Starts small but with a full scale Observatory in the future
 – Lifetime approaching a century
 • Constant growth, modification, and upgrading
 • And removal of obsolescent elements
 • Provide the same science as a sequence of Flagships
 – Support smaller auxiliary telescopes in a complete infrastructure framework
 • Added wavelength coverage (complete spectrum)
 • Perhaps in same SEL2 Halo Orbit, but separated
 – Similar to Mt. Wilson – 100" telescope opened in 1917
 • Approximately same aperture as Hubble

• The Evolvable Space Telescope (EST) Provides an Initial Concept
 – Perhaps the Embryonic Observatory itself
 – And a core capability for long-term growth
Evolution

• The Beginnings:
 – The Evolvable Space Telescope (EST)
 – In-Space Assembly and Servicing Infrastructure
 • Large scale to small scale to touchup
 • Significant dependence upon developments outside SMD

• Conduct Upgrades and Servicing Missions
 – Expedite Selected Upgrades, Repair Malfunctions
 – Possibly Enable Earlier Launches with “Incomplete” Technology/Subsystems
 – And Provide Operational Demonstrations of Servicing as Confidence Builders

• The Goal: a semi-permanent LUVOIR Observatory at SEL2
Two Telescopes – An Observation

- Hubble Space Telescope (HST) began life with an in-space support infrastructure
 - The Space Shuttle
 - Lifetime has reached 25 years
 - And continues………..

- James Webb Space Telescope (JWST) will begin life with no in-space support infrastructure
 - Expected lifetime of 10 years
 - And………..
Evolvable Space Telescope

Three Phases

Note: aperture sizes scale with segment size.
Assembly and Service Infrastructure

• MacroPlatforms: Crewable; e.g., ISS, Deep Space Habitat (DSH)
 – Capable of complete servicing missions, manned or unmanned

• MiniPlatforms: Generally not equipped for crew
 – Too small or inappropriate for life support (mission length, etc.)
 – But can carry out “significant” servicing (to be defined)

• MicroPlatforms: e.g., SPHEREs
 – Limited roles, but potentially important, such as:
 • Evaluating servicing in volumes too small or hazardous for other systems
 • Inserting small components into such areas
 • Rehearsing orbit maneuver

An Effective Long Term Infrastructure Must Include A Mix of All Three
But Attention Has Focused on Macro and Micro – With Little Exception
Hence, A Need to Consider Mini

Deep Space Habitat (DSH) and Human/Robotic Telescope Servicer (HRTS)*
Assembling a Large Space Telescope

MicroPlatforms

SPHERES

Demonstrate Telerobotic/Autonomous Guidance, Navigation, Rendezvous, and Docking Under Microgravity Conditions

NASA CubeSat

CUBESATS
MiniPlatforms

Principal Area of Interest

• Systems have been studied, but not built and deployed
 – Functions performed by subsystems on the parent mission spacecraft
 – Robot arms on the Space Shuttle, ISS
 – And EVA by Astronauts

• Representative studies
 – Goddard GEO Servicer*
 – Single Person Spacecraft (SPS)

• Following discussion - MiniServ

Representative Studies

Single Person Spacecraft (SPS)

• By Definition, A Manned Vehicle
 – Provides Scale for MiniPlatforms
 – Specific Functions, Notably to Replace Space Suits

• Limited by Crew Needs to Neighborhood of Large Manned Systems:
 – International Space Station
 – Deep Space Habitat (DSH)/Transport (DST)

Goddard GEO Servicer*

• Chemically Propelled System
 – ~3700 kg Wet Mass
 – Vicinity of Geostationary Orbit

• Mission To Move About 10 Non-functioning Satellites from GEO to Disposal Orbit (300 km Above)
 – Does Not Service, Replenish, or Upgrade

MiniServ

Unmanned, Long Endurance, Long Range Service Vehicle

- Limited to Deep Space
- Capitalize Upon Libration Point Dynamics
- Perform Limited Servicing Functions

Characteristics

- Modularity/Flying Framework
- Libration Points Exploitation
- Small Size
- Expendability
- Reusability
- Flexibility – Short and Long Term

Value and Utility

- Unplanned Service
- Assembly and Servicing Assistance
- Escort Duty for MacroPlatforms
- Enable Missions Prior To Large Scale Infrastructure
- Side Excursions in Deep Space
Application Examples (1)

Unplanned Telescope Service

• Base at DSH in Earth – Moon Libration Orbit for Minimal ΔV to SEL2

• Include Small Inventory of Repair Parts at Base
 – Consumables as Well

• Develop a Small Additive Manufacturing Capability for the Base
 – Requires Technology for All Materials Needed on Telescope
Application Examples (2)

Mirror Coating in Deep Space (SEL2)

- Bare Aluminum for UV (eliminate need for protective coating)
- Re-coating (gold, silver,…) for extended system duration – visible, IR
- Repair reflective solar/thermal shades
 - May affect trade between parasol and barrel
- Requires technology development for optical coating in deep space
 - Uniform coating in microgravity
 - Deposition controlled to mirror surfaces only
 - Investigation of Al reflectivity degradation in SEL2 orbits

ZeCoat Corp, D. Sheikh
Application Examples (3)

Reprovisioning Consumables for Deep Space Systems

• Reduce need for transits of large systems (Telescope, HRTS)
 – Minimize mission loads on DSHs required for human exploration missions
 – Enable more responsive telescope operations
 – Replenish additional spacecraft in same SEL2 Halo Orbit without incurring expense of HRTS operation

• Expand design space for cryogenic missions
 – May not need high capacity active cooling
 – With attendant weight/vibration

• Enable Addition of External Occulter Late in Program Life Cycle
 – See next chart for specific possibility
WFIRST/AFTA currently planned as next major space astrophysics initiative
 - Could serve as the collector for an external occulter system with relatively minor modifications (To Be Defined) AND IF deployed in SEL2
 • But currently planned for geostationary or Earth drift-away
 - No Starshade planned for deployment, primarily due to long repositioning times required and correspondingly low yield
 - Results enhanced with better propulsion on Starshade
 • And could be used late in WFIRST/AFTA mission to characterize identified exoplanets

Greater propellant load could be provided by refueling with an early MiniServ
 - Eliminate need to rotate Starshade through propellant depot (or launch anew)
 - Conceivably one of two that could rotate between refueling site and depot
 - Telescope and Starshade would operate in same SEL2 halo orbit

Concept details need to be fleshed out
 - Changes to WFIRST/AFTA required to enable concept
 - Potential exoplanet yield/characterization enhancement enabled
“A probe class starshade mission can rendezvous with and effectively leverage WFIRST-AFTA to capture early spectra from Earth-like exoplanets and critically inform the design of future exoplanet flagship missions.

Continuing dark energy observations in parallel with starshade observations minimizes the impact to primary mission objectives.

WFIRST-AFTA can be made starshade ready with minor modifications to the baseline coronagraph instrument and by adding a radio system for starshade communications and range measurement.”
OBSERVATIONS

• The Next Steps in Large Space Telescopes Will Depend Critically Upon:
 – The In-Space Infrastructure Available to the Program Office
 – Or – That Can Be Made Available at the Right Time

• Little to No Infrastructure Limits Development to A Single, Expensive Flagship
 – Essentially A Single Telescope with a Limited Lifetime (5 – 10 – 15 Years)
 – Which Could be Reused with a Very Expensive Service/Rebuild Program
 – Or To Smaller, Special Purpose Telescopes (Probes and Explorers)

• A Developing/Extensive Infrastructure Enables a True Observatory
 – Start Against the Current Most Pressing Science Issues Using Current Technology
 – Build Upon Current Capabilities and Systems
 – Maintain Vibrant Technology Programs for Both Science Missions and Infrastructure
 – And Evolve the Observatory as Technology Develops and Science Issues Deepen

• The Infrastructure Must be a Shared Enterprise
 – All Space-Oriented NASA Directorates
 – Other National/International Space Agencies and Organizations

Plan Space Telescope Technology and Concepts to Capitalize on Servicing
A COMPLETE OBSERVATORY……

ON THE MOUNTAINTOP

REQUIRES………

A COMPLETE INFRASTRUCTURE……

ON THE MOUNTAIN

LARGE……

W. M. Keck Observatory

SMALL……