New Methods for the Optical Design of Spectrometers with Freeform Surfaces

Jacob Reimers, Kevin P. Thompson, Kevin L. Whiteaker, and Jannick P. Rolland

Center for Freeform Optics (CeFO)
The Institute of Optics, University of Rochester
Ball Aerospace
Outline

• Introduction

• Design tools for freeform surfaces

• Spectral full-field display

• Freeform spectrometer design example

• Conclusion
Introduction

• Designing pushbroom imaging spectrometers is challenging

 • Slit field of view (FOV)

 • Dispersive element creates spectral FOV

 • Often coupled with foreoptics
Design tools for freeform systems

• The full-field display (FFD) has been successfully utilized in the design of a LWIR freeform imager

• In the context of spectrometer design, this requires a new, spectral, full-field display (SFFD) to be developed

• The SFFD will enable the aberration visualization and guide the design of freeform spectrometers

Spectral full-field display (SFFD)

A new type of visualization for dispersive imaging systems that is:

- A plot of Fringe Zernike coefficients on field of view vs. wavelength
- Calculated on a term-by-term basis using real ray trace calculations
Design example using freeform optics

• Specifications:
 • F/3.8
 • 200-1500 nm spectral bandwidth
 • 10mm entrance slit length
 • 100nm/mm dispersion

• Offner-Chrisp (OC) spectrometer
 • Concentric
 • Corrects spherical aberration
 • 1-1 magnification
 • Corrects coma and distortion
 • Limited by astigmatism
 • Ring field balance

OC spectrometer - All spherical performance

The maximum/average RMS WFE was calculated for all fields and wavelengths for comparison

All spherical surfaces:

Max RMS WFE: 0.731λ
Avg. RMS WFE: 0.097λ
Benchmarking with coaxial aspheres

All surfaces aspheric (A-D):

Max RMS WFE: \(0.427\lambda\)
Avg. RMS WFE: \(0.091\lambda\)

All aspheric surfaces with astigmatic node shift:

Max RMS WFE: \(0.205\lambda\)
Avg. RMS WFE: \(0.096\lambda\)

Anamorphic aspheric surfaces:

Max RMS WFE: \(0.186\lambda\)
Avg. RMS WFE: \(0.092\lambda\)
Benchmarking with coaxial aspheres

All surfaces aspheric (A-D):
Max RMS WFE: 0.427\lambda
Avg. RMS WFE: 0.091\lambda

All aspheric surfaces with astigmatic node shift:
Max RMS WFE: 0.205\lambda
Avg. RMS WFE: 0.096\lambda

Anamorphic aspheric surfaces:
Max RMS WFE: 0.186\lambda
Avg. RMS WFE: 0.092\lambda
Summary of benchmarking aspheres

All spherical surfaces:
Max RMS WFE: 0.731λ
Avg. RMS WFE: 0.097λ

Anamorphic asphere:
Max RMS WFE: 0.186λ
Avg. RMS WFE: 0.092λ

Note: Avg. RMS WFE does not decrease appreciably
OC spectrometer - freeform performance

All spherical surfaces:
Max RMS WFE: 0.731\lambda
Avg. RMS WFE: 0.097\lambda

Anamorphic asphere:
Max RMS WFE: 0.186\lambda
Avg. RMS WFE: 0.092\lambda

Surfaces are of the \phi-polynomial (Fringe Zernike) type

All freeform surfaces: Diffraction limited for all fields and wavelengths

Max RMS WFE: 0.063\lambda
Avg. RMS WFE: 0.041\lambda
Freeform surface departures

Tertiary – largest departure

PV 833 μm
Exact shape may vary

Common to all surfaces:
Dominated by Astigmatism
< 1000 μm departure
Spherical vs. freeform OC spectrometer

Avg. RMS WFE:
- Spherical → asphere
 6% decrease
- Spherical → anamorphic asphere
 5% decrease
- Spherical → freeform
 58% decrease
Simultaneous achievement of optical performance and distortion correction

• Imaging spectrometers have two types of distortion
 • Spectral smile
 • Typically want to be <1% of a pixel
 • Spatial keystone
 • Typically want to be <5% of a pixel
 • Measured the deviation with respect to the centroid of each wavelength or field

• Distortion and imaging performance are a design trade-off for spectrometers consisting of all-spherical surfaces
 • Freeform corrects smile/keystone while retaining diffraction limited performance in the Offner-Chrisp

Spectral broadened Offner-Chrisp was analyzed to have max 0.1μm smile and 0.08μm keystone which for a 10μm pixel is 1% and 0.8% respectively

Summary

• The SFFD calculates the magnitude and direction of Fringe Zernike coefficients and plots them on field of view vs. wavelength axes

• The SFFD assists the designer in the design of spectrometers

• Insights provided by nodal aberration theory and the SFFD motivate novel compact high performance freeform spectrometers

• The use of freeform surfaces in an Offner-Chrisp spectrometer enables a much wider spectral bandwidth than spherical or aspheric designs due to correction of the astigmatic field as seen using the SFFD

• Leveraging freeform in an Offner-Chrisp facilitates simultaneous optical performance and distortion correction
Acknowledgements

• NSF I/UCRC Center for Freeform Optics (CeFO)
 Ball Aerospace & Technologies Corp.; OptiPro Systems, LLC; PerkinElmer; PolymerPlus LLC; Rochester Precision Optics; SCHOTT North America, Inc.; Air Force Research Laboratory; Zygo Corporation; ARRI.

• Peter Marasco and Dennis Yates for the stimulating discussions

• Synopsys Inc. for the student license of CODE V